Environmental Geologist, Kevin McAndrews @kevincobarno: A Day in the GeoLife Series

environmental geologist

Kevin McAndrews, Project Manager and Environmental Geologist. Photo credit: Kevin McAndrews

NAME:  Kevin McAndrews

CURRENT TITLE:  Project Manager and Environmental Geologist

AREA OF EXPERTISE:  Environmental consulting, contaminate remediation, hydrogeology, and vapor intrusion

YEARS OF EXPERIENCE:  5 years at a small environmental consulting firm

EDUCATION:  Bachelors of Science in Geological Sciences, Salem State University, Salem, Massachusetts, United States

WEBSITE:  www.cleansoils.com

TWITTER:  www.twitter.com/kevincobarno

What’s your job like?

My job consists of both managing projects from the office and conducting environmental fieldwork which typically averages a 50/50 split. The scope of work for each project varies depending upon the degree of contamination; however, a significant amount of my work consists of providing oversight, sampling, and closure report writing for sudden oil and hazardous material spill site cleanups. Other projects revolve around property transaction due diligence, where I evaluate the site history, direct test boring and groundwater monitoring well installations, observe test pit excavations, install sub-slab soil gas probes, and sample various media including soil, groundwater, sediment, soil gas, and indoor air for potential contamination. At properties where historic contamination is identified, I conduct subsurface nature and extent delineation studies, prepare hydrogeologic contaminant plume migration models, develop remedial action plans, and implement the actual cleanup which ranges from excavating and dewatering a site to injecting remedial additives for in-situ contaminant degradation. Following the cleanup, I prepare closure reports which involve data analysis and risk assessment.

tank closure

Underground Storage Tank Closure and Removal. Photo credit: Kevin McAndrews

What’s a typical day like?

A typical day in the office consists of arriving early and meeting with my team to go over the ongoing projects and delegate the daily tasks. Some mornings will involve a conference call with a client regarding the status of an ongoing project or with a state regulator for additional approvals at a cleanup site. Answering project inquiries and preparing cost proposals is very common. Some office days, I will see 2 or 3 cost proposals leave my desk. The remainder of my office work is tied to preparing reports of varying complexities, ranging from Limited Environmental Reviews and Phase I Environmental Site Assessments for property transactions, all the way to state-required Permanent Solution Reports for cleanups. Such cleanup reports involve drafting site plan figures, tabulating analytical data, and developing conceptual site models in order to assess the environmental risk associated with residual contamination left in place. These reports are then sent to the Licensed Site Professional (LSP) for final review before being submitted to the state Department of Environmental Protection for closure.

A typical field day of drilling involves preparing a sampling plan, directing the driller to the correct location and depth, observing the soil boring cores retrieved and preparing logs based upon lithology, preparing soil core samples to be field screened via photoionization detector (PID) for total organic vapors, and submitting select samples to be laboratory analyzed for the contaminants of concern.

Photoionization Detector

Field Screening Contaminated Soil via Photoionization Detector (PID). Photo credit: Kevin McAndrews

soil sample collection

Preparing Soil Samples for Laboratory Analysis. Photo credit: Kevin McAndrews

Following the soil boring core samples, the driller will install a groundwater monitoring well within the boring.

Direct Push Technology

Limited Access Soil Boring Advancement via Direct Push Technology. Photo credit: Kevin McAndrews

Hollow Stem Auger

Deep Soil Boring Advancement via Hollow Stem Auger Technology. Photo credit: Kevin McAndrews

The well is gauged, developed, purged, and sampled for similar contaminants of concern.

environmental sampling

Groundwater Quality Monitoring and Environmental Sampling. Photo credit: Kevin McAndrews

Most sites will require a potentiometric map to be developed by conducting an elevation survey of all the wellheads.

well elevation survey

Conducting a Well Elevation Survey for a Potentiometric Surface Map. Photo Credit: Kevin McAndrews

Other field work consists of directing cleanup crews during active excavation work to remove contaminated soil, most often related to a tractor trailer crash that released diesel fuel oil to the roadway shoulder soil.

soil excavation

Roadway Diesel Spill Cleanup Via Excavator. Photo credit: Kevin McAndrews

In some limited access locations, we will bring in a high-powered vacuum truck to remove the contaminated soil.

vacuum truck

Roadway Diesel Spill Cleanup Via Vacuum Truck. Photo credit: Kevin McAndrews

The dirty dirt is then brought to an approved facility for recycling. Most often, the oil-affected soil is sent for thermal desorption into a usable material such as roadway base. Lastly, I conduct vapor intrusion assessments to determine whether off-gassing from contaminated sites is affecting the breathable air of a building. For these studies, I install sub-slab soil gas probes beneath the basement concrete slab in order to test the soil gas air beneath a building as well as collect ambient indoor air samples.

What’s fun?

The best part about being an environmental consultant is that I’m literally a contamination detective. I have to research the history of a property and the surrounding area which usually turns up some interesting historical facts. This research ranges from visiting local libraries and local government offices, to reviewing historic Sanborn fire insurance maps, aerial photographs, city directories, and conducting interviews with anyone who will talk to me. Once all that information is compiled, I conduct a site visit in order to confirm the findings and observe for any further areas of likely contamination. The clues from potential contamination can range from something as innocuous as an old floor drain in a former dry cleaner to a large oil stain on soil beneath an old tractor. If the presence or likely presence of contamination is identified, the next step is to collect analytical data in order to confirm or dismiss the contamination. More often than not, I run into sites with historic contamination in-place where further assessment is necessary and eventually remediated. The investigation portion of my job collides with my love for geology where going into the ground to collect samples reveals the glacial and post-glacial history of the New England region where I work. A majority of the soil boring cores I collect consist primarily of glaciofluvial deposits, marine clays, and anthropogenic fill. The remnants left in the ground following the industrial revolution and subsequent developments provide an intriguing look into how businesses such as manufactured gas plants, textile mills, auto service stations, and dry cleaners operated prior to the hazardous waste regulations put in place during the mid-1980s.

soil boring cores

Soil Boring Cores with Visible Staining From Former Auto Service Station. Photo credit: Kevin McAndrews

What’s challenging?

The most challenging aspect of my job is the client interface when presenting unfavorable findings and recommendations. As a scientist, presenting data in an easy-to-understand way is important for helping the client make informed decisions regarding the environmental conditions of a property.  Also, as an environmental advocate, it is difficult to stand by as the decision to leave contamination in place is made. I have dealt with several properties where the current owner had inherited the property, we identified a high level of contamination, and they decided to leave the property vacant instead of cleaning it up during a redevelopment.

What’s your advice for students?

field geologist

Fieldwork Fun! Photo credit: Kevin McAndrews

My advice to students is to network as much as possible. You never know who might have a job opening or know someone who is looking for an immediate hire. A significant amount of my colleagues have been in the right place at the right time to land a job due to an immediate opening after someone had left the company. No matter what position you start out with, stay with it for at least 1 year in order to build up your experience and try to learn everything you can. Have a positive attitude and take every opportunity to build your skill set. Learning what you don’t like about a job or industry will help guide you in a better direction in the future.